
Team 10
Connor Pawar
Devin Suttles
Ian Yake
Kyle Lindteigen
Sherman Choi

Team Name:

WellSpokn

Project Synopsis

A web application that allows users to locate and correct issues within their recorded
speeches, such as bad grammar, filler words, repetition, and other issues.

Project Description

There are many writing services, such as for spelling and grammar checking, that utilize
software, but there are no analogous services for speech improvement. WellSpokn aims to
provide services to aid one’s speech practice.

For many, finding an audience to practice one’s speech on is difficult and, in the event
that an audience is found, can be daunting and potentially unhelpful. In contrast, practicing
speeches in solitude is not as constructive as it could be since it does not allow one to get
objective, focused feedback on their speech. WellSpokn can act as an audience to a speaker,
giving an analysis of one’s speech after it is done. For example, if a speech is given too quickly,
the speaker will be notified that they may be speaking too quickly.

The target audience of WellSpokn would be students, politicians, managers, and any
other individual that needs to make a speech.

The final product will be a web application that can be used on any device with a
microphone; this allows WellSpokn to be easily accessible through mobile devices and usable on
high-end desktop machines.

Project Milestones
● Semester 1

a. Establish Platform, Languages, and Tools
- Finish by October 11th, 2019

b. Prototype the design of the website and backend data workflow
- Finish by October 30th, 2019

c. Draft UML diagrams
- Finish by November 11th, 2019

d. Create an Alpha Build
- Finish by December 13th, 2019

● Semester 2
a. Create test cases (frontend and backend)

- Finish by February 3th, 2020
b. Add additional features (speech metrics, user accounts, user history, etc)

- Finish by March 23rd, 2020
c. Generate beta build based off of feedback

- Finish by April 13th, 2020
d. Publish application and client-side testing

- Finish by May 8th, 2020

Project Budget

Required Item Estimated Cost Cost After
Credits

When Required

Domain Name $12.00 $12.00 January-1-2020

Google Language Recognition
Services

$60.00 $0 As soon as possible

Google Natural Language
Services

$20.00 $0 November-15-2019

DigitalOcean Server Hosting
Services

$60.00 $5 November-15-2019

Total $152.00 $17.00 N/A

Work Plan
Sherman Choi - Backend Developer, / API Designer
Ian Yake - Backend Developer / Tester / Security Engineer
Kyle Lindteigen - Backend Developer / Test Engineer
Devin Suttles - Frontend Developer / Graphics Designer / Sales Engineer
Connor Pawar - Frontend Developer / UI & UX Designer

Gantt Charts

Fall Semester

Spring Semester

Final Project Design

General Overview
WellSpokn will have the following main components: a front-end, a back-end API,

database storage, and a data pipeline. The frontend is how end users will primarily interact with
and utilize our services in a vibrant and user-friendly way. The API facilitates data flow between
the database and all the other components through the use of endpoints. The database will retain
user information and their speeches in a relational schema. Lastly, the data pipeline will take the
data from the speeches and convert it to information useful to the user.

Infrastructure
DigitalOcean will be used to host our servers for end users and databases for storage.

Google Cloud is also used for their services, mainly natural language processing. Other services,
such as LanguageTool, are used to provide further insight into speeches; this list is not
comprehensive as development discovers additional tools and avenues of speech improvements.
To ensure modularity and flexibility of the data pipeline and its functionality, WellSpokn will be
organized using the microservices architecture.

Frontend and User Experience
The frontend will be written in JSX with the React.JS library for the ease of

component-based development. Prospective users of WellSpokn are initially greeted by our
landing page which is where they have the ability to login or register so that the service can store
the progress of the user and their speeches; providing a username, password, and email to sign
up. After login, the user is then sent to the main view, where they may create speeches or view
any of the speeches they have previously created. If a user chooses to create a speech, they will
need to specify the purpose, topic, and formality of the speech; afterward, the speech is added to
the main view. If the user wants to view an existing speech or view the speech they created, they
will need to select it to either see information about their previous attempts of the speech or add
new attempts. New attempts can either be uploaded using an existing audio file or recorded
through microphone input.

After the user generates an attempt of a speech, it will be processed through the data
pipeline in order to analyze and provide suggestions to the end user. The errors and suggestions
are classified based on the types of mistakes the user made for the user’s convenience, e.g. errors
about unnecessary filler words are differentiated from suggestions for stronger wording. If
previous attempts exist, the errors from before can be compared to the errors in the newest
attempt to provide data about one’s progress in making that specific speech; this information can
be organized into a graph to demonstrate the progress of one’s speech.

Additional actions the user may take when reviewing their attempts include filtering out
errors they are not concerned about, deleting attempts, adding notes, and filtering out specific
categories of errors. Both attempts and speeches may be deleted at the user’s discretion. Settings
are provided so that the user may personalize their experience; an example of this is giving users
the ability to ignore certain types of errors. The user experience is visualized through the diagram
below:

Backend API
The backend consists of various microservices that are built using different tools and

languages to ensure communication between the front end, data pipeline, and storage. This will
all be handled securely as there will be authentication services provided using Passport.JS. The
API will be used to move speech audio, as an audio file, from the frontend to the data pipeline to
obtain analysis data, which is stored in our database. Connections to External APIs are provided
through clients that can be used through the Node.js framework that are provided by Google. The
backend utilizes Sequelize, an ORM library, to obtain data from the database upon request; this
data can be the transcript of a speech or the suggestions on that speech. The main format of data
will be JSON.

Database and Storage
Database and storage relies on SQL databases. The database will contain the following

entity tables: Users, Speech, Attempts, and Error; with relation tables as necessary. An entity
relation diagram is provided which details all the attributes for each entity.

● The User table contains information regarding the user necessary for identification and
security.

● The Speech table contains general information about a set of attempts, such as speech
topic and date created.

● The Attempt table contains specific information on practice sessions for a given speech;
this table should contain counts of all related errors with that given session.

● The Error table houses JSON objects containing information on the location and type of
errors contained in a specific speech.

These tables will be connected to one another through relation tables that house

key-value pairs of two primary keys. This will allow for easier queries on the more complex data
we need to store.

Data Pipeline
The data pipeline (Figure 1) refers to the set of tools and services that are used to analyze

one’s speech. After recording or uploading a speech, the backend uses the audio file from the
user to perform the following tasks. The raw audio file containing the user’s speech is converted
into a transcript using Google Cloud Speech-to-Text. Next, the transcript is analyzed using
Google Cloud’s Natural Language API; this should discover deficiencies, errors, and potential
improvements on the semantics of one’s speech. Relevant topics that the user may need to learn
include: sentiment, grammar issues, unwanted filler words, repeated or weak wording. The raw
audio file is paired with the transcript to analyze for potential vocal and pacing improvements.
Examples of these items would include: speaking too fast or too slow, monotone speech, excess
or lack of pauses. To discover these mistakes, we rely on tools such as LanguageTool to help
spot grammar mistakes, OpenVokaturi for emotion detection, and SciPy/NumJs for pitch and
vocal analysis. The listed tools are not comprehensive and the proposed tools are subject to
change due to the complexity of analyzing both the vocal and semantic parts of the speech. After
this analysis, the errors and potential improvements for the given attempt will be categorized and
formatted for the user.

Design Constraints
WellSpokn will rely on Node.JS and npm provided libraries to host servers to provide

end-users access to the web application; although alternatives exist, Javascript facilitates pipeline
adaptability given our choice of software architecture. Due to the fact that WellSpokn’s data
pipeline will be built using a microservices structure, actual analysis and processing of speeches
is not limited to a specific language; however, standardization of communication between
services is required, and the method of data transfer between services will be in the JSON
format.

In regards to business constraints, since natural language processing is a specialized
discipline, WellSpokn will utilize the services of Google Cloud’s suite of natural language tools.
WellSpokn will likely be hosted using DigitalOcean, so there are server hosting costs as well.
Additionally, we may be reliant on outsourcing functionality to other parties to perform other

tasks, such as emotion recognition. As a result, funding is essential in ensuring that WellSpokn
can have access to these services during development for testing purposes before it reaches a
state of self-sustainability.

Other Concerns
Ethical Issues

From an ethical standpoint, there is the overarching issue of security when dealing with
web applications. Our product, like many other web apps, will require utilizing outside sources
for assistance in processing data. We are outsourcing our natural language processing and
semantic analysis, both of which will necessitate the use of HTTPS requests to transfer data. We
intend to secure these kinds of communication in accordance with Article 2.9 of the ACM Code
of Ethics which states, ​ “Robust security should be a primary consideration when designing and
implementing systems.” Specifically, we will be using the Passport library.

Another ethical issue that arises is using Google to do our data processing. Handing over
personal information and vocal samples to a company known for selling customer data to
advertising firms at first appearance seems to be a major ethical violation. However, in Google’s
own privacy policy it states, “You own your data. Google Cloud does not process your data for
advertising purposes.” In other words, Google does not process the data for any reason other than
what our request tells it to do. We will have our Google Cloud accounts set up to not allow for
the storage of customer data as well.

Intellectual Property Issues

When it comes to intellectual property issues, we have come across one potentially major
subject matter so far: our application allows users to upload their own files to our server. There is
a legal grey-area surrounding ownership in these cases, so we would like to make it as clear as
possible that we have no desire to attain the intellectual property rights to these uploaded files.
Google Drive suffers from a similar issue and its terms and conditions broadcast similar
sentiment to what we would like to convey:

Google claims no ownership or control over any Content submitted, posted or displayed
by you on or through Google services. You or a third party licensor, as appropriate,
retain all patent, trademark and copyright to any Content you submit, post or display on
or through Google services…

It is important to us that we do not lay claim to any of the speeches submitted to our product as
we are aiming to gain as many users as possible and losing intellectual property rights is sure to
scare off many users.

Another important distinction to make regarding intellectual property is that we plan to
have a proprietary license for our project. We would like the ability to sell premium accounts for
our application that would allow for a more upgraded experience across the board. As such, we
intend to write our own EULA as we come closer to the end of our project and eye a deployment
schedule.

Change Log
Updated February 5, 2020:

1) Refined the synopsis to better illustrate the final product
2) Updated the previous project milestones to better reflect the actual timeline
3) Clarified the budget to reflect free usage rates for students
4) Edited Frontend and User Experience section to better reflect the current state of the

product.

